Test – Mathematics			
Class 10	Topic – Real no. & polynomial	FM-50 Marks	

Sec-A(2 Marks each)

 $2 \times 8 = 16$

1. If α and β are the zeroes of the polynomial $4x^2 - 2x + (k - 4)$ and $\alpha = \frac{1}{\beta}$ find the value of k.

2.Explain why $7 \times 6 \times 5 \times 4 \times 3 + 5 \times 11$ are composite numbers. Express as product of its prime factors : 5225

3.If the polynomial $(x^4 + 2x^3 + 8x^2 + 12x + 18)$ is divided by another polynomial $(x^2 + 5)$, the remainder comes out to be (px + q). Find the value of p and q.

4. Classify the following numbers as rational or irrational : 86.212212221...

Check whether there is any value of n for which 6 n is end with Zero.

5. α and β are the zeros of the polynomial $f(x) = x^2 - 5x + k$ such that $\alpha - \beta = 1$, find the value of k.

6.Given that L.C.M (150, 100) = 300, find H.C.F (150, 100) Can two numbers have 16 as their HCF and their LCM? Give reason.

- 7.Without actual division , show that each of the following rational numbers is a terminating decimal. Express each in decimal form : $\frac{23}{2^3 \times 5^2}$
- **8**. Three pieces of timber 42 m, 49 m and 63 m long have to be divided into planks of the same length. What is the greatest possible length of each plank ?

9. Prove that $\frac{-2\sqrt{3}-7}{5}$ is irrational

10. If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes. **11.** Prove that $\sqrt{7}$ is irrational.

12. Find the quadratic polynomial whose zeroes are double the zeroes of $6x^2 - 13x + 6$

13.Case study :Teaching Mathematics through activities is a powerful approach that enhances students' understanding and engagement. Keeping this in mind, Ms. Mukta planned a prime number game for class 5 students. She announces the number 2 in her class and asked the first student to multiply it by a prime number and then pass it to second student. Second student also multiplied it by a prime number and passed it to third student. In this way by multiplying to a prime number, the last student got 173250. [CBSE 2024]

(i) What is the least prime number used by students?	(1)
(ii) (a) How many students are in the class?	
Or	
(b) What is the highest prime number used by students?	(2)
(iii) Which prime number has been used maximum times?	(1)

14. Find zeroes of quadratic polynomial x²- 15 and verify the relationship between zeroes and coefficients of the polynomial.

 [CBSE 2024]

15.Find H.C.F and LCM of 40 , 42 and 45 by prime factorization method.

16. If α and β are the zeros of the polynomial $p(s) = 3s^2-6s + 4$ find the value of

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$$

The "NLC" -----> Learn for Knowledge; not only to score marks (Sec 4E, Street 9 Behind DPS Gate no.2 ph no. 7783045551) **17**. A pair of irrational numbers whose product is rational :- **[CBSE 2024]**

- a) $(\sqrt{16}, \sqrt{4})$
- b) $\sqrt{5}, \sqrt{2}$)
- c) $(\sqrt{3}, \sqrt{27})$
- d) $(\sqrt{36}, \sqrt{2})$
- **18.** Given H.C.F(2520,6600)=40, [CBSE 2024] LCM (2520,6600) = 252 x K, then value of K is:
 - a) 1650
 - b) 1600
 - c) 165
 - () 103
 - d) 1625 What should be from t

19. What should be from the polynomial x^2-5x+4 , so that 3 is the zero of resulting polynomial.

[CBSE 2024]

- a) 1
- b) 2
- c) 4
- d) 5

20.The smallest irrational no. by which $\sqrt{20}$ should be multiplied so as to get a rational number is

[CBSE 2024]

- a) $\sqrt{20}$
- b) $\sqrt{2}$
- c) 5
- d) √5

21.Find the number of zeroes of polynomial, given in

- the graph.
 - a) 1 b) 2
 - c) 4
 - d) none of these

\bigwedge	
	J

22. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is

- a) 13
- b) 65
- c) 875
- d) 1750

23. If P(x) and D(r) are any two polynomials such that $D(x) \neq 0$, there exists unique polynomial Q(x) and R(x) such that, P(x) = D(x). Q(x) + R(x) where :

- (a) R(x) = 0 and deg R(x) > deg Q(x)
- (b) (b) R(x) = 0 or deg R(x) > deg <math>D(x)
- (c) (c) deg R(x) < deg Q(x)
- (d) (d) R(x) = 0 or deg R(x) < deg D(x)

24. If
$$a = 2^3 \times 3$$
, $b = 2 \times 3 \times 5$, $c = 3^n \times 5$ and
ICM (a, b, c) = $2^3 \times 3^2 \times 5$ then n=?

- LCM (a, b, c) = 2³ x 3² x 5 then n=? a) 1
- b) 2
- a) 2
- c) 3d) 4
- **25.** If the zeroes of the quadratic polynomial $Ax^2 + Bx + C$, $C \neq 0$ are equal, then
 - (a) A and B have the same sign
 - (b) A and C have the same sign
 - (c) B and C have the same sign
 - (d) A and C have opposite signs
- **26.** If p and q are coprime numbers, then p^2 and q^2 are
 - a) coprime
 - b) not coprime
 - c) even
 - d) odd
- 27. If the zeroes of the quadratic polynomial
 - x² + (a + 1) x + b are 2 and -3, then
 - (a) a = -7, b = -1
 - (b) a = 5, b = -1
 - (c) a = 2, b = -6
 - (d) a =0 0, b = -6